Final Thesis (Master): Reinforcement Learning Based Traffic Optimization Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Anzeige vom: 23.06.2024

Final Thesis (Master): Reinforcement Learning Based Traffic Optimization

Standort:
  • Ingolstadt
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

Zusammenfassung

  • Arbeitszeit
    Vollzeit
  • Typ
    Festanstellung

Gewünschte Fähigkeiten & Kenntnisse

Machine Learning
Programmiererfahrung
Budget
CAN
Basic HTML
Mobile App
Data Science
Python
TensorFlow
Mechanical
Engineering
Flexibilität

Unsere Leistungen

Supervision

Stellenbeschreibung

The Fraunhofer-Gesellschaft (www.fraunhofer.com) currently operates 76 institutes and research institutions throughout Germany and is the world's leading applied research organization. Around 30 800 employees work with an annual research budget of 3.0 billion euros.

Would you like to improve your programming skills and apply your knowledge in the field of machine learning? For our ongoing research projects, we are seeking exceptional candidates to write their final (Master's) thesis with a focus on, With its focus on developing key technologies that are vital for the future and enabling the commercial utilization of this work by business and industry, Fraunhofer plays a central role in the innovation process. As a pioneer and catalyst for groundbreaking developments and scientific excellence, Fraunhofer helps shape society now and in the future.



Ihr Profil


  • enrolled in a study program in one of the following (or similar) areas: data science, electrical engineering, information

  • technology, physics, computer science, mathematics or mechanical engineering

  • strong background in the fields of machine learning and reinforcement learning

  • very good academic performance

  • very good programming skills (Python)

  • experienced in using TensorFlow, PyTorch and SUMO

  • previous own work in the field of reinforcement learning

  • knowledge of algorithms such as Q-Learning, A2C, PPO, Rainbow

  • deep understanding of neuronal networks as well as LSTM and transformer architectures

  • strong commitment and ability to work collaboratively in a team

  • proactive and creative working style

    What you can expect

  • challenging tasks in highly relevant and application-oriented projects

  • professional supervision

  • highly motivated teams working in an open and cooperative environment

  • modern research infrastructure

  • flexible working hours



Kontakt


If you have any questions, please contact: bewerbung.studenten@ivi.fraunhofer.de

You can find more information on the institute online: www.ivi.fraunhofer.de/en

https://www.ivi.fraunhofer.de/en/about-us/departments/application_center_THI.html

Fraunhofer Institute for Transportation and Infrastructure Systems IVI

www.ivi.fraunhofer.de

Profil

Fachliche Voraussetzung

  • Algorithmus, Bestärkendes Lernen, Computerprogrammierung, Data Science, Deep Learning, Elektrotechnik, Informatik, Infrastruktur, Machine Learning, Maschinenbau, Mathematik, Physik, Python, Pytorch, Tensorflow

Persönliche Fähigkeiten

  • Eigenmotivation, Kreativität, Teamarbeit

Bewerbung

    Branche:

    Bildung / Forschung

    Arbeitgeber:

    Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.

    Adresse:

    Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Pascalstr 8 9
    10587 Berlin